DATE: 6/2; DUE: 27/2 AT THE START OF LAB

SIMPLE TELESCOPE OPTICS

SIMPLE LENS

- We will be using convex lenses in this lab.
- As light passes through a convex lens, the lens bends the light so that it converges at what is called a "focal point".
- The distance between the lens and focal point is called the focal length.
- We can combine multiple convex lenses to create a simple telescope that can magnify objects.

REFRACTORS VS REFLECTORS

- Refractors: use lenses
 - First telescopes
 - Lenses suffer chromatic aberration
 - Large lenses are extremely expensive and heavy

- Reflectors: use mirrors
 - Modern telescopes
 - Does not suffer chromatic aberration
 - Mirrors are lightweight and cheap

ABERRATION

COMA

- Coma causes "tails" when not centered
- This makes it harder to see the fine details of an image

RAY TRACING

Convex lenses will produce a reverse image; height depends on the distances (F) and focal length (f)

- O: object
- I: image
- F: object distance
- f': image distance

VERNIER CALIPERS

- 1. Read the measurement of Main scale to the left of 0
 - Save this number
- 2. Find the line on the Vernier scale that matches one on the Main scale
 - Divide this number by 10 and add to the previous measurement

What is the reading on this scale?

PART I: IMAGE SCALE

- Be careful with the lenses; do not drop them and try not to touch the optical surfaces
- Measure the focal length (f') on the optical bench and the image size created using the Vernier caliper for all lenses
- Fill out Table 1
- 3 graphs (use Excel or Python):
 - Image size vs f'
 - 2. Image size vs curvature radius
 - 3. Image size vs diameter
- You will need to extrapolate these graphs for some questions
- Make sure all units are in mm

PART II: SURFACE BRIGHTNESS

- 1. Visual comparison of surface brightness
 - D1 & D2: same f'
 - F1 & F2: same diameter
- 2. Calculate the relative brightness using the equation Brightness = $\left(\frac{d}{f}\right)^2$
- 3. Calculate the focal ratio (f-ratio) of all lenses
 - f-ratio = f'/diameter

PART III: RESOLVING POWER

• Calculate $\Theta_{\text{theoretical}}$ (resolution) for I and d (I = 44 mm, d = 0.51 mm) in arcsec of the metal plate (Q15).

 Based on this value, calculate the spacing that you can resolve using I and d (Q16) at given H.

Eq 1: arcsec

D = I or d (diameter of telescope) mm $\Theta = \text{resolution}$ $\lambda = 500 \times 10^{-6} \text{ mm}$

$$\theta = 206265 \frac{(1.22\lambda)}{D}$$

Eq 2: arcsec

r = spacing mm H = height mm

$$\theta = 206265 \frac{r}{H}$$

PART III: RESOLVING POWER

- Take a metal plate. Stand above the Resolution Chart (measure H in mm)
- Determine the limiting resolution where you can no longer resolve +2 separate lines
- Record

PART III: RESOLVING POWER

- Go to https://www.edmundoptics.com/
 knowledge-center/tech-tools/
 https://www.edmundoptics.com/
 h
- Calculate spacing: r=1/lines pairs per mm
- Find the angular resolutions (Eq 2) and compare to Q15

HOLDING VERTICALLY	GROUP	ELEMENT	LINE PAIRS PER MM	SPACING (MM)
VERTICAL	**repeat for	when holding	horizontally**	
HORIZONTAL				

PART IV: SIMPLE TELESCOPE

- Follow the instructions in this section to create a telescope with an objective & eyepiece
- Measure f' and image height
- Calculate the magnification

1.
$$m = \frac{f_o}{f_e}$$

2. Visual comparison

