

EXOPLANET DETECTION: 4 MAIN WAYS

For more info, check out this cool page on the NASA website: https://exoplanets.nasa.gov/5-ways-to-find-a-planet/

WHAT METHOD HAS FOUND THE MOST CANDIDATES?

TRANSITS CAN TELL US A LOT ABOUT THE PROPERTIES OF EXOPLANETS

RADIAL VELOCITY CURVES ALSO TELLS YOU CERTAIN PROPERTIES

- Mass is related to velocity: The heavier the planet, the higher its velocity and vice versa.
- The x-axis, in time, shows us the period of the planet.
- Remember! . If the period changes, so does the semi-major axis.

HD209458 B

Use the program Planet to find the properties of HD209458 B.

You will first use the transit to find the:

- 1. Radius
- 2. Inclination

Next, you will use its velocity curve to find the:

- 3. Mass
- 4. Period (Hint, it's already given in the book)
- 5. Semi-major axis

GREENHOUSE EFFECT AND GLOBAL WARMING

CALCULATIONS

Lets see what the temperature of Venus, Earth and Mars would be without an atmosphere:

- First and foremost, energy conservation!
- This means that the energy from the sun, must be re-radiated by the planet surfaces. It does this in the form of infrared radiation (heat).
- , Where L is the solar luminosity, r is the radius of the planet, D is the distance between the sun and planet, and F is the fraction of light absorbed (1-albedo).
- , where r again is the radius, T is the planet temperature, and B is the Stefan-Boltzmann constant.
- Equating the two equations give, where.

Next, lets see what the temperature would be with an atmosphere!

- Atmospheres let visible light through but absorbs the infrared radiation.
- Because the suns light is mostly in the visible spectrum, remains unchanged.
- However, some of the infrared light radiated from the planets surface is absorbed by the atmosphere and re-radiated back to the surface, leaving the planet with some extra heat!
- · Note that still holds true, so energy re-radiated by atmosphere must equal .
- Half is radiated back out to space, and half is radiated back the planet surface, aka.
- Solving this gives us, .
- Therefore, . More heat!

MOLECULES MATTER

- Some molecules are better at absorbing infrared radiation than others.
- Therefore, the types of molecules in the atmosphere are important.
- CO2 is one of these molecules (We will see this first hand!).
- The CO2 cycle keeps Earth's climate warm and stable.
- However, like most things, too much is not good!

