THE NIGHT LAB

PARTS OF A TELESCOPE

A TELESCOPE IS A SPACESHIP AND A TIME MACHINE

DISTANCE TO ANDROMEDA GALAXY = 24,010,000,000,000,000,000 KM TIME FOR LIGHT TO TRAVEL THIS DISTANCE = 2.5 MILLION YEARS

Compare:

Sun 8.3 light-minutes

Moon 1.3 light-seconds

Alpha Centauri 4.3 light-years

DIFFERENT WAVELENGTHS REQUIRE DIFFERENT TELESCOPES AT DIFFERENT LOCATIONS

REASON? EARTH'S ATMOSPHERE!

10.4-m Canarias Gran, Spain

3.58-m CFHT, Hawaii

10-m Keck, Hawaii

6-m BTA-6, Russia

6.5-m Magellan1, 2, Chili

8.2-m Subaru, Hawaii

DFM CCT-32 AT THE UNIVERSITY OF VICTORIA

OPTICAL TELESCOPES

- Is an optical instrument (uses lenses, mirrors, etc.)
- Collects light ('a light bucket') from very distant (= very faint) astronomical objects
- Magnifies and enhances the view of these faraway objects
- Separates (= <u>resolves</u>) very closely spaced objects
- Uses instruments (camera, spectrograph, etc) to scientifically analyze the collected light.

TWO TYPES OF OPTICAL TELESCOPES

Refractor

- Primarily uses lenses as the optical elements to collect and magnify light
- Used for small amateur telescopes and telephoto lenses (photography)

Reflector

- Primarily uses mirrors as the optical elements.
- Used in all modern large scientific telescopes

REFRACTOR TELESCOPES

- Is essentially a tube with a lens at each end.
- Light enters through a main objective lens at one end, refracts (bends) to a point
 of focus at the other end where an image is formed by the eyepiece.
- The eyepiece can be moved back and forth to adjust the sharpness of the focus.

REFRACTOR TELESCOPES CONT.

Advantages

- The optical system is more resistant to misalignment than the reflector telescopes.
- The glass surface inside the tube, sealed from the atmosphere, <u>rarely needs</u> <u>cleaning</u>.
- Due to sealed tube, air currents and effects from changing temperatures are reduced, meaning that the <u>images are steadier and sharper</u> than those from an open reflector telescope of the same size.
- Good for objects inside our solar system.

REFRACTOR TELESCOPES CONT.

Disadvantages

- Refractors suffer from an effect called **chromatic aberration** (`color deviation or distortion'') that produces a rainbow of colors around the image.
- How well light passes through a lens decreases as the thickness of the lens increases
- Making a large glass lens with no internal imperfections is extremely difficult and expensive.
- The lens can only be supported on its edge. A heavy glass lens will sag under its own weight.

CHROMATIC ABERRATION

REFLECTOR TELESCOPES

Newtonian Reflector

Incident light collected by the parabolic mirror is reflected to a plane (flat) mirror, which then directs it into an eyepiece located at the side of the telescope.

REFLECTOR TELESCOPES CONT.

Advantages

- No chromatic aberration because all wavelengths are equally reflected.
- Objective mirror is fully supported along the back side and are lighter than lenses. This allows for large telescopes to be constructed.
- Only one good surface on mirror is needed.
- Lower cost to make reflector than refractor of the same size.

REFLECTOR TELESCOPES CONT.

Disadvantages

- a shadow is produced by the secondary mirror
- depending on the size of the secondary mirror, less light gets to the eye than originally enters the telescope tube.
- Mirrors are exposed, meaning they must be cleaned regularly.

PARTS OF A NEWTONIAN TELESCOPE

Tube: Holds the whole optic system.

Mount (Base): Supports and allows movement of the telescope tube.

Primary mirror (concave mirror): Gathers the light and reflects it back toward the secondary mirror.

Secondary mirror: A flat mirror reflects the light to the side of the telescope toward the eyepiece.

Eyepiece: Creates the final focus correction.

Finder (a refractor): Locates the object in a much larger FOV.

Focuser: Adjusts the focus.

LIGHT COLLECTING POWER OF AN OPTICAL TELESCOPE

M13 COMPARISON

A larger mirror collects more photons making an object appear brighter

The light gathering power of a telescope is directly proportional to the area of the primary mirror.

EXAMPLE

How much more light will the large telescope gather compared to the small telescope?

COMPLETING THE NIGHT LAB

Stellarium

Jupiter through 8-in telescope

Ring Nebula through 32-in telescope